TPC : Préparation d'une solution aqueuse de glucose

Calcular	15	colubilitá	expérimentale	du	alucoso	donel	,0011
Carculer	ıа	solubilite	experimentale	uu	grucose	uans i	eau.

 Savoir	préparer	une solution	par	dissolution	et	dilution.	choix	du	bon	matériel.

	REA 1	REA 2	ANA 2	AUTO
Auto-évaluation				
Évaluation professeur				

	Évaluation professeur								
	I. Rappels d	e sec	onde						
	Une solution peut être p Si le solvant est l'eau, or					da	ans un		
dar	Le titre massique ou cc ns un certain volume de		tion mas	ssique C_i	$_n$ d'une s	olution cor	respond à	la masse de	soluté dissou
daı	La concentration mol ns un certain volume de		'une solu	tion corre	spond à l	a quantité d	de matière	de soluté (1	$n_{ m solut\acute{e}}) { m \ dissout}$
	Entre la quantité de ma	tière d'ur	n soluté e	t sa masse	e on a la 1	relation:			
	Entre C et C_m on a la r	elation (r	elation à	savoir dé	montrer	:			

II. Estimation de la solubilité du glucose dans l'eau

- ▶ Verser 10,0 mL d'eau distillée dans un tube à essai.
- ► Ajouter 2,0 g de glucose.
- ► Agiter.
- 1. Pourquoi peut-on dire que le glucose est soluble dans l'eau?
 - ▶ Ajouter dans le tube à essai précédent :
 - 1,0 g de glucose pour le groupe 1
 - 2,0 g de glucose pour le groupe 2
 - 3,0 g de glucose pour le groupe 3, etc...
 - ► Agiter.
- 2. Noter la valeur de la masse maximale de glucose dissoute.
- 3. Que peut-on dire de la solution lorsque le glucose ne se dissous plus?
- 4. Calculer la solubilité en g. L^{-1} du glucose dans l'eau.
- 5. En déduire la solubilité en $\mathrm{mol.L^{-1}}$ du glucose dans l'eau.

```
Formule brute du glucose : C_6H_{12}O_6

M_{\rm H}=1{,}00~{\rm g.mol^{-1}} M_{\rm C}=12{,}0~{\rm g.mol^{-1}} M_{\rm O}=16{,}0~{\rm g.mol^{-1}}
```

III. Préparation d'une solution aqueuse de glucose par dissolution

On veut préparer un volume V = 100,0 mL d'une solution aqueuse de glucose de concentration massique $C_m = 45,0$ g.L⁻¹.

- 6. Calculer la masse de glucose à peser pour préparer cette solution.
- 7. Écrire le protocole de dissolution pour réaliser cette solution.
 - ▶ Réaliser votre solution en suivant votre protocole.
- 8. Calculer la concentration molaire de cette solution.

IV. Préparation d'une solution aqueuse de glucose par dilution

On veut préparer une solution aqueuse de glucose appelée solution fille de volume $V_{\rm f}=50.0$ mL de concentration $C_{\rm f}=5.0.10^{-2}$ mol.L⁻¹ par dilution de la solution précédente qui sera appelée solution mère $(C_0=2.5.10^{-1} \ {\rm mol.L^{-1}})$.

Rappels:

- Lors d'une dilution, on choisit la pipette jaugée à utiliser selon le volume de solution mère à prélever.
- On choisit la fiole jaugée à utiliser selon le volume de la solution fille à préparer.
- La quantité de matière de glucose présente dans la solution fille est égale à la quantité de matière de glucose présente dans le volume prélevé de la solution mère. En effet on ne rajoute que de l'eau.
- 9. Écrire une relation entre C_0, V_0, C_f, V_f . Puis calculer le volume à prélever.
 - ▶ Verser une quantité suffisante de solution mère dans un bécher.
 - \blacktriangleright À l'aide d'une pipette jaugée (préalablement rincée avec la solution mère), prélever le volume V_0 .
 - ► Verser ce volume dans une fiole jaugée de 50,0 mL.
 - ▶ Ajouter de l'eau distillée aux 3/4 et agiter.
 - ▶ Ajouter de l'eau distillée jusqu'au trait de jauge et agiter.